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HEAT- AND MASS-TRANSFER CALCULATIONS USING 
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Abstract-Simple formulae and charts are already available to calculate the performance of heat- and mass- 
transfer equipment if the relation expressing equilibrium between the phases is linear and the transfer co- 
efficient is given. 

Examples are gas absorbers if Henry’s law is obeyed or heat exchangers transferring sensible heat. 
It is shown that simple charts can also be prepared where the equilibrium relation can lx expressed in 

the form 

u* = A + Bu + Cexp(Du) 

where u* is a potential in equilibrium with potential I’ in another phase and A, E, C and D are constants. 
A limited number of charts will cover all conditions. 

The situations examined are parallel flow of phases-both concurrent and countercurrent-crossflow of 
the phases and the time-dependent case where one phase is stationary and the other moves through it. 

The exponential equilibrium relation can be empirically fitted with high accuracy to many industrially 
important classes of equilibrium data over wide ranges. 
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NOMENCLATURE 

constants in equilibrium relation ; 
specific heat of water ; 
inert gas mass flow rate; 
enthalpy of moist air per unit 
mass of dry air; 
constant value of h; 
value of h for air in equilibrium 
with water at temperature T; 
defined by equations (8); 
defined by equation (9) ; 
value of Ho when R, = f 1; 
N.T.U. integral [equation (6)] ; 
transfer coefficient i 
water mass flow rate ; 
mass of adsorbate per unit mass 
of inert gas ; 
constant value of m ; 
value of m for gas in equilibrium 
with adsorbent containing con- 
centration w of adsorbate; 

P, 
R, 
Roy 
4 
IT: 
T,, 
u*, 

defined by equation (8); 
defined by equation (8); 
defined by equation (10) ; 
time ; 

wo, 
x, 
X, 

Y. 
Y. 

Z, 
163 

temperature ; 
constant temperature ; 
potential in one phase in equi- 
librium with potential u in the 
other phase ; 
potential in one phase ; 
mass of adsorbate per unit mass 
of adsorbent; 
constant value of w ; 
horizontal coordinate ; 
dimensionless horizontal co- 
ordinate ; 
vertical coordinate ; 
dimensionless vertical coordi- 
nate ; 
linear coordinate. 
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Greek symbols 
8. dimensionless temperature 

[equation (U)] ; 
8 m average value of 0 [equation 

(3611; 
e XT 8 at intersection of operating 

line and equilibrium curve ; 
PY bulk density of adsorbent ; 
43 dimensionless enthalpy [equa- 

tion (27)] ; 
4*, value of 4 on equilibrium curve 

for given 8 ; 
dt? value of 4 on equilibrium curve 

for 8 = 0 [equation (28)]. 

INTRODUCTION 

A LARGE part, perhaps the majority, of process 
heat- and mass-transfer calculations involve the 
estimation of the performance or the design of 
equipment for three different situations : 

(a) Parallel flow of the phases ; 
(b) Cross flow of the phases; 
(c) One stationary phase with the other 

phase moving through it. 

To make the calculations a transfer co- 
efficient is required and in this paper it is assumed 
to be known. We also require a relation de- 
scribing the equilibrium between one phase and 
the other. In many cases this relation is linear, 
as for example in gas absorption, if Henry’s law 
is obeyed, or when sensible heat is being trans- 
ferred and the equilibrium temperature of one 
phase in terms of the temperature of the other 
phase is needed. Then the calculation for case 
(a) above can bc made using a simple formula, 
while (b) and (c) can be solved with the aid of a 
chart containing families of curves, as long as 
the inlet or starting conditions of each phase is 
uniform. 

Nevertheless many important industrial pro- 
cesses involve non-linear equilibrium relations. 
When cooling water with air, the equilibrium air 
enthalpy is a non-linear function of water 
temperature. When adsorbing a molecular 
species from a gas stream, the equilibrium 

partial pressure of the species is a non-linear 
function of the concentration of the species in 
the adsorbent. These relations, however, can 
often be expressed empirically and with suitable 
accuracy over large ranges by 

u* = A + Bu + Cexp(Dv) (1) 
and this is true of the particular and important 
processes just mentioned. a* is the value of a 
concentration or potential in one phase which 
is in equilibrium with a concentration or 
potential u in the other phase. A, B, C and D are 
constants chosen to make a suitably accurate 
tit with equilibrium data. As an example, the 
equilibrium enthalpy of air, h* Btu/lb dry air, 
is expressed with an accuracy better than 0.1 
per cent in the range of water temperatures 
from 60°F to 90”F-the industrially important 
range-if A = - 10.0, B = 0, C = exp (1.954) 
and D = 0.02352 and u is the water temperature, 
T”F. A good lit over a larger range can be 
obtained if B is chosen to be non-zero. 

This paper will show that, if the form of equa- 
tion (1) can be accepted, charts can be prepared 
which will reduce the time required for calcula- 
tions to the same as that required with linear 
equilibrium relations. The constants A, B, C 
and D would not appear as explicit variables so 
that the charts will be general in their applica- 
tion. 

In the case of parallel flow two families of 
curves and hence basically two charts are re- 
quired, one for concurrent and one for counter- 
current flow. In practice, however, each chart 
would be broken into about ten fragments to 
obtain a high reading accuracy. 

For the cases of cross flow and one stationary 
phase a set of charts would be required for each 
case to replace the single chart used with a 
linear equilibrium expression. 

No attempt is made in this paper to present a 
comprehensive set of charts for obvious reasons 
of space limitation. It is emphasized however 
that, with an electronic computer, a set of about 
fifty charts can be produced which would remove 
the need for any further computer calculations. 
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The following sections derive the necessary 
expressions with reference to particular in- 
dustrial processes. It will be clear, however, that 
the final expressions will be quite general. 

PARALLEL FLOW 

Consider a cooling tower operation. G is the 
mass flow rate of dry air with an enthalpy h per 
unit mass. L is the mass flow rate of water with a 
temperature T and specific heat cL. L and G are 
both positive in concurrent flow. A heat balance 
is 

c,LdT + Gdh = 0 (2) 

which integrates to give the “operating line” 

c, L(T - To) + G(h - h,) = 0 (3) 

where subscript 0 refers to an arbitrary position 
in the tower to be chosen later. 

The equilibrium line is 

h* = A + BT + C exp (DT). (4) 

Now the calculation that has to be made is 
that for the number of transfer units (N.T.U.), 
defined by 

hz hz 
dh 

~ 
h* - h 

where 

hl 

s 

dh - 
h*-h = 

ha 

h 

I= 
s 

dh 
h”-h: 

ho 

11 (5) 

(6) 

Substitute equations (2), (3) and (4) in (6) 
T 

I= -P 

s 

RdT 
R Cexp(DT)-H+R(T-T,) (7) 

TO 
where 

H = [h,, - A - BT,], 

R = (P + B). (8) 

Now to define new constants Ho and R, and 
the reduced temperature 8 write 

H = H,,Cexp(DT,) (9) 

R = R&D exp (DT,) (10) 

8 = D(T - To) (11) 

when equation (7) becomes e I= -2 
R s R, de 

exp (e) - H,, f. 8. 
(12) 

0 

We can now make an arbitrary choice of a 
constant, which is equivalent to the choice of 
an arbitrary position in the tower, as mentioned 
above adjacent to equation (3). We choose 
R, = + 1 and equation (10) shows that the 
upper sign will apply to concurrent flow and the 
lower sign to countercurrent flow. It is noted 
that if D is negative C is also negative in practical 
cases. To emphasize that the choice has been 
made a second subscript 0 is employed. Thus 
equation (12) becomes e I= TP s de 

R exp (e) - Ho0 f 8. 
(13) 

0 

It is clear that (R/P)I can be represented as a 
family of curves vs. 0 with Ho0 as a parameter. 
To use the curves an equation for 8 with Ho0 
is required. From equations (10) and (11) 

t3=DT-In ‘& [ 1 (14) 

which is the equation for 8. 
Divide equation (9) by (10) 

Ho0 = &;H. (15) 

Substitution of the values of ho and To from 
equations (3) and (11) into equation (8) gives 

H=[h-A-BT]+;@ (16) 

From equations (15) and (16) we find the 
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equation for Ho0 to be 

H,,= *i[h-A - BT] f 8. (17) 

Graphical presentation for parallelflow 
Figure 1 shows the curve exp (6) vs. 0 and four 

representative straight lines (0 + Hoe) vs. 8. 
It is clear from equation (13) and equation (6) 
that exp (0) is a reduced equilibrium curve and 
(0 + H,,) is a reduced operating line for counter- 
current flow. Figure 1 makes it plain that the 
extrapolated operating line will not intersect 
the equilibrium line if Ho0 < 1 since ee = 1 and 
has a slope of unity at 0 = 0. 

t 
o,b,c.d, examples 
of reduced operoiifq 
Iines(QtH,J 

- 
8 

RG. 1. Reduced equilibrium curve and operating lines in 
countercurrent flow. 

The four representative operating lines of 
Fig. 1 indicate four situations encountered when 
evaluating Z(R/P) from equation (13). They 
form a suitable basis for fragmenting the whole 
family of curves into a number of charts. When 
the slope of the operating line is - 1 we have, 
of course, only two different situations to 
consider. 

An example of a chart for countercurrent 
flow is shown in Fig. 2. It is for a situation where 
the extrapolated operating line would intersect 
the equilibrium curve. As would be expected, 
the individual curves tend to infinity and become 
diflicult to read with accuracy. This is of no 
concern since, where this happens, we can 
integrate equation (13) approximately with 

sufficient accuracy as follows. Find the point 
of intersection e, from 

exp w = f ex + Ho0 (18) 

and write 

e = 8, + Ae. (19) 

We find from equation (13) that if 

A8 < 2[ 1 f exp ( - e,)] 
then 

We can also find simple approximations 
where 8 is very large, very small or close to zero. 

Cross jlow 
Consider a crossflow cooling tower with the 

water falling in the positive y-direction and the 
air travelling horizontally in the x-direction. 
The heat balance is 

The transfer equation is 

G; = k(h* - h) 

(21) 

where k is the transfer coefficient. 
To get a useful result we must put B = 0 in 

the equilibrium relation. Thus 
h* = A + C exp (DT). (23) 

The boundary conditions are 

at x = 0, h = ho (24) 

at y = 0, T = TO. 65) 

We define 

8 = D(T - TO) (26) 

(#)= h-ho 
C exp WC,) 

ei = h,* - ho 

C exp (DT,) 
(28) 
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-12- 

-I I- 

-10- 

-9- 

-B- 

-7 -- 

FIG. 2. An example of a chart for countercurrent flow. Equivalent to 
operating line b of Fig. 1. 

X=%, 

y = kCD exp WC,) 
CL.L 

Y 

(2% (32) 

(30) ax = exp (0) - C$ + c#$ - 1 (33) 

where with the boundary conditions 

/I:, = A + Cexp (DT',). (31) at X=0 I$=0 (34) 

Substituting equations (23), (2630) in equa- at Y=O e = 0. (35) 
tions (21), (22), (24) and (25) we obtain Equations (32) and (33) are solved without 
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difficulty by a computer. An example of a 
resultant chart of particular use in cooling 
tower calculations is given in Fig. 3. In it lines of 
constant reduced mixed water temperature 8, 
are plotted in X-Y coordinates for 4: = 0.5 
where 

x 

em= f 8dX [5 1 (36) 
Y = constant. 

0 

The number of charts required for accurate 
cooling tower calculations is not more than ten. 

The significance of different values of 4: can 
be seen from Fig. 4 in which the equilibrium 
curve of equation (23) has been put in the 
reduced form 

c$* = 4: + exp (0) - 1 (37) 

and 4 is plotted vs. 8. The origin of the graph 
represents the boundary conditions of (34) and 
(35). Conditions within the tower lie within the 
shaded area, which is approximately triangular. 
One side, however, is curved and extends from 

8 = 0 to 8 = In [l - 4x1. At t9 = 0 this side- 
the reduced equilibrium curve- has a slope of 
unity and at 8 = In [l - @] it has a slope of 
[l - @]. Thus &$ indicates the relative 
curvature of the equilibrium curve in the 
particular problem. 

One stationary and one moving phase 
Consider an unsteady state adsorption prob- 

lem. There is a mass flow rate G of inert gas 
containing a weight m of adsorbate per unit 
weight of inert gas. The stationary phase has a 

I Reduced 

B.ln[l-+:I 8=0 
FIG. 4. Region of operation in crossflow. 

X 
0 0 0.5 0.5 I.0 I 5 2-O 2-5 3.0 35 4.0 4 5 5.0 5.5 60 &5 7.0 7-5 &O 6.5 9-O 9-5 I.0 I 5 2-O 2-5 3.0 35 4.0 4 5 5.0 5.5 60 &5 7.0 7-5 &O 6.5 9-O 9-5 

6.5 : 
40 - ‘. \t. 
9.5 
9.5 \-0.660 \-0.660 \0.600 \-0.600 l-0540 l-O.400 \-0540 \ -0.460 

FIG. 3. Curves of constant 0, in crossflow q5X = 0.5 
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bulk density p and a weight w of adsorbate per 
unit mass. The gas is travelling parallel to 
coordinate z and t is time. Then, ignoring the 
quantity of inert gas within the stationary phase, 
a mass balance gives 

G$+p$O. 
The transfer equation is 

at z=O m = m, (41) 
at t=O w = wg. (42) 

These equations are exactly the same in form 
as equations (21-25) and thus an analogous 
treatment can be used but the dimensionless Y 
coordinate will become a dimensionless time 
coordinate. The form of the charts produced, 
however, may be different to satisfy the different 
objective of design calculations. 

The equilibrium expression is 
m* = A + C exp(Dw). 

The boundary conditions are 
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Rt%umh-Des formules et des diagrammes simples sont deja disponibles pour calculer les performances 
d’tquipements de transport de chaleur et de masse si la relation exprimant 1’6quilibre entre les phases 
est lit&ire et si I’on donne le coefficient de transport. 

On donne comme exemples des gaz absorbants obeissant a la loi de Henry ou des 6changeurs de chaleur 
transportant de la chaleur sensible. 

On montm que des digrammes simpla peuvent aussi dre prepares dan lesquels la relation d’equilibre 
peut &tre exprimee sous la forme : 

u*=A+Bv+Cexp(Du), 

ou u* est un potentiel en equilibre avec le potentiel v dans une autre phase et A, B, C et D sont des constantes. 
Un nombre limit6 de diagrammes rend compte de toutes les conditions. 

Les cas Ctudib sont 1’6coulement parallele de phases-soit a courants paralleles, soit a contre-courant- 
l’ecoulement perpendiculaire des phases et le cas transitoire pour lequel une phase est immobile et l’autre 
se d&place a travers elle. 

La relation d’tquilibre exponentielle peut &tre adapt6e empiriquement avec une grande precision et 
dans des gammes Ctendues a de nombreux groupes importants au point de vue industriel de valeurs 

d’tquilibre. 

Zusammenfassung-Es existieren bereits einfache Formeln und Diagramme, urn Wlrme- und Stoff- 
Transport-Apparaturen zu berechnen, wenn die Beziehung zwischen den Phasen einem linearen Gesetz 
folgt und der Transport-Koeffrzient gegeben ist. 

Beispiele sind Gasabsorber, wenn das Henry’sche Gesetz gilt oder Wlrmetauscher, die fiihlbare Warme 
iibertragen. 

u* = A + Bu + C exp (Du) 

hat, wobei u* ein Potential im Gleichgewicht mit dem Potential o einer anderen Pjase darstellt und A, B, 
C und D Konstanten sind. Eine begrenzte Zahl von Diagrammen beschreibt alle Zusammenhlnge voll- 
stlndig. 

Untersucht wurden die Anordnungen Gleichstrom, Gegenstrom, Kreuzstrom der Phasen und der 
zeitabhangige Fall, wobei eine Phase station% ist und die andere durch sie bewegt wird. 

Die exponentielle Gleichgewichtsbeziehung kann empirisch vielen industrieg wichtigen Gruppen von 
Gleichgewichtsdaten mit grosser Genauigkeit und in weiten Bereichen angepasst werden. 
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AHHOTBqHJI--IIpMUOAHTC~ npOcTbIe @OpMyJIbI H rpa@HKJl AJIH paCqeTa XapafqTepMcTHK 
TenJIO-M MaCc006MeHHbIX yCTaHOBOf< IrpS yCJlOBHH, 'IT0 3aAaH KO3f#@H~ReHT nepeHOCa II 
oTHoIueHI~~,onecblnaroqlle paefIo3ecae MeHcny ~asam,nuHei%ffbI. 

1% KageCTfse rfpmepa paccMaTpmafoTcH ra303bIe a6cop6epbI flm cnyqan, ecm co6nfo- 
AaeTCR 3aKOH I'eHpkI,M- BbICOKOHHTeHCkiBHbIeTenn006YeHHHKH. 

IloKa:laHo, 'fT0 MOWHO nOCTpOMTb npOCTbIe rpa@MKH, f?I'?IU III)eJ[CTaHMTb ypaRffeHMe 
paHHOUeCllH II R&lAe 

u* = A + Eo + Cexp(Do) 

rfie U* eCTb nOTeHl[MaJI, p3BHOBeCHbIti C nOTeHUHanOM U B ApyrOii +a3e, 3 /I, B, c M D- 
KOHCTaHTbI. He6onbIuoCL 06%eM rpaf$ElKOB MOWeT OTpa3ilTb BCe CJIyqaH. 

PaCCMaTpHBaKJTCH CJIy'IaH napaJIJleJIbHOr0 IIOTOKa f#fa3, (npFIMOTOKa W IIpOTl4BOTOKa), 
nonepeworo noTokra #aa H HecTaIIeortapIIbIti cnyqati, KOrAa OAfta $a3a HenOABWKHa, a 
BTOpaH npOXOAMT 'Iepe3 He&. 

~MnklpM~eCKoe 3fwIorieHuHanbtioe ypaulIeIIRe paBHOBeCWI M0%~0 c 60JfbUIOti TOqHOCTbfO 
Ilpl4MeHHTb 3 IIIMpOKOM AMaf,aZ,OHe KO MHOrHM npaKTWIeCK&f HaPKfIbIM KJIaCCaM A3HHbIX n0 

pa3fro~eCnIo. 


