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Abstract—Simple formulae and charts are already available to calculate the performance of heat- and mass-
transfer equipment if the relation expressing equilibrium between the phases is linear and the transfer co-
efficient is given.

Examples are gas absorbers if Henry’s law is obeyed or heat exchangers transferring sensible heat.

It is shown that simple charts can also be prepared where the equilibrium relation can be expressed in
the form

u* = A + By + Cexp(Dv)

where #* is a potential in equilibrium with potential  in another phase and 4, B, C and D are constants.
A limited number of charts will cover all conditions.
The situations examined are parallel flow of phases—both concurrent and countercurrent—crossflow of
the phases and the time-dependent case where one phase is stationary and the other moves through it.
The exponential equilibrium relation can be empirically fitted with high accuracy to many industrially
tmportant classes of equilibrium data over wide ranges.

NOMENCLATURE

A, B,C, D, constantsinequilibrium relation; P, defined by equation (8);

Crs specific heat of water; R, defined by equation (8);

G, inert gas mass flow rate; R,, defined by equation (10);

h, enthalpy of moist air per unit t, time;
mass of dry air; T, temperature ;

hq, constant value of h; T, constant temperature;

h*, value of h for air in equilibrium u*, potential in one phase in equi-
with water at temperature T ; librium with potential » in the

H, defined by equations (8); other phase;

H,, defined by equation (9); v, potential in one phase;

Hyo, value of Hy when Ry = + 1; w, mass of adsorbate per unit mass

I, N.T.U. integral [equation (6)]; of adsorbent;;

k, transfer coefficient ; Wo, constant value of w;

L, water mass flow rate; X, horizontal coordinate ;

m, mass of adsorbate per unit mass X, dimensionless horizontal co-
of inert gas; ordinate;

mg, constant value of m; ¥y, vertical coordinate;

m¥*, value of m for gas in equilibrium Y, dimensionless vertical coordi-
with adsorbent containing con- nate;
centration w of adsorbate; z, linear coordinate.
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Greek symbols

0. dimensionless temperature
[equation (11)];

O average value of 6 [equation
(36)];

0., # at intersection of operating

line and equilibrium curve;

o, bulk density of adsorbent;

o, dimensionless enthalpy [equa-
tion (27)];

o*, value of ¢ on equilibrium curve
for given 6;

o8, value of ¢ on equilibrium curve

for 6 = 0 [equation (28)].

INTRODUCTION

A LARGE part, perhaps the majority, of process
heat- and mass-transfer calculations involve the
estimation of the performance or the design of
equipment for three different situations:

(a) Parallel flow of the phases;

(b) Cross flow of the phases;

{c) One stationary phase with the other
phase moving through it.

To make the calculations a transfer co-
efficient is required and in this paper it is assumed
to be known. We also require a relation de-
scribing the equilibrium between one phase and
the other. In many cases this relation is linear,
as for example in gas absorption, if Henry’s law
is obeyed, or when sensible heat is being trans-
ferred and the equilibrium temperature of one
phase in terms of the temperature of the other
phase is needed. Then the calculation for case
(a) above can be made using a simple formula,
while (b) and (c) can be solved with the aid of a
chart containing families of curves, as long as
the inlet or starting conditions of each phase is
uniform.

Nevertheless many important industrial pro-
cesses involve non-linear equilibrium relations.
When cooling water with air, the equilibrium air
enthalpy is a non-linear function of water
temperature. When adsorbing a molecular
species from a gas stream, the equilibrium
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partial pressure of the species is a non-linear
function of the concentration of the species in
the adsorbent. These relations, however, can
often be expressed empirically and with suitable
accuracy over large ranges by

u* = A + Bv + Cexp (Dv) (1)

and this is true of the particular and important
processes just mentioned. u* is the value of a
concentration or potential in one phase which
is in equilibrium with a concentration or
potential v in the other phase. A, B, C and D are
constants chosen to make a suitably accurate
fit with equilibrium data. As an example, the
equilibrium enthalpy of air, #* Btu/lb dry air,
is expressed with an accuracy better than O-1
per cent in the range of water temperatures
from 60°F to 90°F—the industrially important
range—if A = —100, B = 0, C = exp (1'954)
and D = 0-02352 and v is the water temperature,
T°F. A good fit over a larger range can be
obtained if B is chosen to be non-zero.

This paper will show that, if the form of equa-
tion (1) can be accepted, charts can be prepared
which will reduce the time required for calcula-
tions to the same as that required with linear
equilibrium relations. The constants 4, B, C
and D would not appear as explicit variables so
that the charts will be general in their applica-
tion.

In the case of parallel flow two families of
curves and hence basically two charts are re-
quired, one for concurrent and one for counter-
current flow. In practice, however, each chart
would be broken into about ten fragments to
obtain a high reading accuracy.

For the cases of cross flow and one stationary
phase a set of charts would be required for each
case to replace the single chart used with a
linear equilibrium expression.

No attempt is made in this paper to present a
comprehensive set of charts for obvious reasons
of space limitation. It is emphasized however
that, with an electronic computer, a set of about
fifty charts can be produced which would remove
the need for any further computer calculations.
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The following sections derive the necessary
expressions with reference to particular in-
dustrial processes. It will be clear, however, that
the final expressions will be quite general.

PARALLEL FLOW

Consider a cooling tower operation. G is the
mass flow rate of dry air with an enthalpy h per
unit mass. L is the mass flow rate of water with a
temperature T and specific heat ¢,. L and G are
both positive in concurrent flow. A heat balance

1S
¢,LdT + Gdh =0 )

which integrates to give the “operating line”
LT — Ty) + Gth — hg) =0 (3)

where subscript 0 refers to an arbitrary position
in the tower to be chosen later.
The equilibrium line is

h* = A + BT + Cexp (DT). (4)

Now the calculation that has to be made is
that for the number of transfer units (N.T.U.),

defined by
hz hz
dh dh
N'T'U'zjh*—h_jh*—h
hy 0
hy
dh
- J—_Z =1, -1, (5)
ho
where
h
dh
z_f;t?, ©)

ho
Substitute equations (2), (3) and (4) in (6)
T

o _P RdT o

" R)Cexp(DT)—H+R(T-T,)
To

where

H=[h, — A— BT,]. P=CL—GL.

R=(P+B. (8
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Now to define new constants H, and R, and
the reduced temperature 8 write

H = H,Cexp(DT,) 9)
R = R,CDexp(DTy) (10)
0 =D(T — Tp) (11)

when equation (7) becomes
'}

P R, df
Rlexp () —Hyo + 0

0

I= (12)

We can now make an arbitrary choice of a
constant, which is equivalent to the choice of
an arbitrary position in the tower, as mentioned
above adjacent to equation (3). We choose
Ry = +1 and equation (10) shows that the
upper sign will apply to concurrent flow and the
lower sign to countercurrent flow. It is noted
that if D is negative C is also negative in practical
cases. To emphasize that the choice has been
made a second subscript 0 is employed. Thus
equation (12) becomes

/]

_zP do
T T R)epO) —Hp 2 0

0

(13)

It is clear that (R/P)I can be represented as a
family of curves vs. 0 with H,, as a parameter.
To use the curves an equation for 8 with H,,
is required. From equations (10) and (11)

R
= —In |+ == 14
§=DT —In [_ CD] (14)
which is the equation for 6.
Divide equation (9) by (10)
D
H,, =+ —H. 15
o=t g (15)

Substitution of the values of hy and T; from
equations (3) and (11) into equation (8) gives

H=[h—A—BT]+gH. (16)

From equations (15) and (16) we find the
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equation for Hy, to be

Graphical presentation for parallel flow

Figure 1 shows the curve exp (6) vs. 8 and four
representative straight lines (6 + Hyo) vs. 6.
It is clear from equation (13) and equation (6)
that exp () is a reduced equilibrium curve and
(6@ + Hy,) is a reduced operating line for counter-
current flow. Figure 1 makes it plain that the
extrapolated operating line will not intersect
the equilibrium line if Hyo < 1 since ¢ = 1 and
has a slope of unity at § = 0.

Reduced

equilibrium [5
curve exp 8

a,b,c,d, examples
of reduced operating
lines (B+#,)

/

F1G. 1. Reduced equilibrium curve and operating lines in
countercurrent flow.

=

The four representative operating lines of
Fig. 1 indicate four situations encountered when
evaluating I(R/P) from equation (13). They
form a suitable basis for fragmenting the whole
family of curves into a number of charts. When
the slope of the operating line is —1 we have,
of course, only two different situations to
consider.

An example of a chart for countercurrent
flow is shown in Fig. 2. It is for a situation where
the extrapolated operating line would intersect
the equilibrium curve. As would be expected,
the individual curves tend to infinity and become
difficult to read with accuracy. This is of no
concern since, where this happens, we can
integrate equation (13) approximately with
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sufficient accuracy as follows. Find the point
of intersection 8, from

exp(8,) = F0, + Hy, (18)
and write

0 =06,+ A0.
We find from equation (13) that if

AG < 2[1 + exp(—6,)]

(19)

then

R N Fi A,
pll— L] = L—————Xp(ex) T J In [Aol]‘ (20)

We can also find simple approximations
where 8 is very large, very small or close to zero.

Cross flow

Consider a crossflow cooling tower with the
water falling in the positive y-direction and the
air travelling horizontally in the x-direction.
The heat balance is

oh ¢ LOT
o + —G—E; = (. (21)
The transfer equation is
G% = k(h* — h) (22)
0x

where k is the transfer coefficient.
To get a useful result we must put B =0 in
the equilibrium relation. Thus

h* = A + Cexp(DT). (23)
The boundary conditions are
at x=0, h=h, (24)
at y=0, T=T, (25)
We define
0=DT—- T, (26)
h h ho
¢ = Cexp(DTy) 27)
hg - ho
* = ———
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FIG. 2. An example of a chart for countercurrent flow. Equivalent to
operating line b of Fig. 1.

X = %x (29)
Y = kCD exp (DTo)y (30)
c L
where
h§ = A + Cexp(DTy). (31)

Substituting equations (23), (26-30) in equa-
tions (21), (22), (24) and (25) we obtain

op a6
a—X + —a—}—, =0 (32)
0¢
S =P O — ¢+ g5 -1 (33)
with the boundary conditions
at X=0 ¢=0 (34)
at Y=0 0=0. (35)

Equations (32) and (33) are solved without
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difficulty by a computer. An example of a
resultant chart of particular use in cooling
tower calculations is given in Fig. 3. In it lines of
constant reduced mixed water temperature 0,
are plotted in X-Y coordinates for ¢ = 0-5

where
X
0, = [i j 0 dXJ
" X A Y =constant,

The number of charts required for accurate
cooling tower calculations is not more than ten.

The significance of different values of ¢¢ can
be seen from Fig. 4 in which the equilibrium
curve of equation (23) has been put in the
reduced form

¢* = ¢3 +exp(6) — 1

and ¢ is plotted vs. 8. The origin of the graph
represents the boundary conditions of (34) and
(35). Conditions within the tower lie within the
shaded area, which is approximately triangular.
One side, however, is curved and extends from

(36)

(37)

=0tof =In[l — ¢§] At 6 = O this side—
the reduced equilibrium curve— has a slope of
unity and at 6 = In [1 — ¢%] it has a slope of
[1 — ¢%] Thus ¢% indicates the relative
curvature of the equilibrium curve in the
particular problem.

One stationary and one moving phase

Consider an unsteady state adsorption prob-
lem. There is a mass flow rate G of inert gas
containing a weight m of adsorbate per unit
weight of inert gas. The stationary phase has a

¢
Reduced

¢~/ equilibrium
4 curve

Region of
operation

s
oo
oot

0.0 5°0°8°%9.

8=tnll- ¢3] =0
F1G. 4. Region of operation in crossflow.
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F1G. 3. Curves of constant 6,, in crossflow ¢% = 0-5.
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bulk density p and a weight w of adsorbate per
unit mass. The gas is travelling parallel to
coordinate z and ¢t is time. Then, ignoring the
quantity of inert gas within the stationary phase,
a mass balance gives

Oow

om
—-— — =0,
G@z+p8t

The transfer equation is

(38)

2
G = kim* — m), (39)
0z
The equilibrium expression is
m* = A + Cexp (Dw). (40)

The boundary conditions are

769
at z=0 m=m, 41)
at t=0 w = w,. (42)

These equations are exactly the same in form
as equations (21-25) and thus an analogous
treatment can be used but the dimensionless Y
coordinate will become a dimensionless time
coordinate. The form of the charts produced,
however, may be different to satisfy the different
objective of design calculations.
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Résumé—Des formules et des diagrammes simples sont déja disponibles pour calculer les performances
d’équipements de transport de chaleur et de masse si la relation exprimant 1’équilibre entre les phases

est linéaire et si 'on donne le coefficient de transport.

On donne comme exemples des gaz absorbants obéissant 3 la loi de Henry ou des échangeurs de chaleur

transportant de la chaleur sensible.

On montre que des digrammes simples peuvent aussi étre préparés dan lesquels la relation & équilibre

peut étre exprimée sous la forme:

= A + Bv + C exp (Dv),

ol u* est un potentiel en équilibre avec le potentiel » dans une autre phase et A, B, C et D sont des constantes.
Un nombre limité de diagrammes rend compte de toutes les conditions.

Les cas étudiés sont I’écoulement parali¢le de phases—soit & courants paralléles, soit & contre-courant—
I’écoulement perpendiculaire des phases et le cas transitoire pour lequel une phase est immobile et 'autre

se déplace 4 travers elle.

La relation d’équilibre exponentielle peut étre adaptée empiriquement avec une grande prec1slon et
dans des gammes étendues 4 de nombreux groupes importants au point de vue industriel de valeurs
d’équilibre.

Zusammenfassung—Es existieren bereits einfache Formeln und Diagramme, um Warme- und Stoff-
Transport-Apparaturen zu berechnen, wenn die Beziehung zwischen den Phasen einem linearen Gesetz

folgt und der Transport-Koeffizient gegeben ist.

Beispiele sind Gasabsorber, wenn das Henry’sche Gesetz gilt oder Wirmetauscher, die fithlbare Wirme

iibertragen.

u* = A + Bv + Cexp(Dv)

hat, wobei u* ein Potential im Gleichgewicht mit dem Potential v einer anderen Pjase darstellt und A, B,
C und D Konstanten sind. Eine begrenzte Zahl von Diagrammen beschreibt alle Zusammenhénge voll-

standig.

Untersucht wurden die Anordnungen Gleichstrom, Gegenstrom, Kreuzstrom der Phasen und der
zeitabhiingige Fall, wobei eine Phase stationir ist und die andere durch sie bewegt wird.
Die exponentielle Gleichgewichtsbeziehung kann empirisch vielen industriell wichtigen Gruppen von
Gleichgewichtsdaten mit grosser Genauigkeit und in weiten Bereichen angepasst werden.
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Annoranmns—IlipuBogATca npocreie QopMysnbl M rpagUKM [IA pacyeTa XapaKTepHCTHH
TeNJa0-u MacCcOOOMEHHBIX YCTAHOBOK NDH YCJIOBHM, YTO 33faH KO3(QPHMIMeHT nepeHoca U
OTHOUIEHHA, ONUCHBAIOLIME PABHOBECHe MemLy Pasamu, IMHEHHDL,

B kavecTBe npumepa paccMaTPUBAIOTCH ra3oBele abcoplephi anA caywad, ecam cobmio-
aaerca 3akoH 'eHpu, W BHICOKOMHTEHCHBHbIE TEMI000MEHHUKH.

IlokasaHo, YTO MOMKHO TIOCTPOMTH NPOCTHIE TpaduUKM, &M JIPEJCTARMTE YDABHEHME
pPABHOBECHH B Buje

u* = A + Bv 4+ Cexp (Dv)

rjie u* ecrTb NMOTEHUNAJ, PABHOBECHBI ¢ NOTEHUMANOM v B Apyroil dase, a ., B, Cu D —
rkoHeraHThl. HeGonbmoit o6bem rpadukoB MoseT oTpasuTb BCe CIyYaH.

PaccmaTpuBaloTcs ciiyuyau napanneisHoro noroxa ¢as, (MPAMOTOKA M IPOTHBOTOKA),
nonepevyHoOro noToka $as M HeCTAlMOHAPHBIN ClydYail, Korga ofHa ¢asa HENOABHMKHA, a
BTOPas MPOXOJAUT Yepes Heé.

IMIIMpHYECKOe IKCIIOHEHMAIbHOE YPABHEHME PABHOBECHA MOMKHO C (OJIBINOA TOYHOCTDHIO
HPUMEHUTL B NIUPOKOM [(MANa30He KO MHOIMM NPAaKTHYECKH BAMKHBIM KIIACCAM JAHHBIX IO

pPaBHORECHIO.



